遂溪| 东兴| 成都| 无极| 察隅| 兴海| 崇仁| 海南| 称多| 浦城| 横县| 崇义| 邓州| 广昌| 霍州| 两当| 泰州| 三水| 上海| 广安| 青岛| 麻栗坡| 青铜峡| 鲁甸| 红安| 克什克腾旗| 且末| 喜德| 湾里| 广平| 郎溪| 云龙| 麻阳| 寿阳| 湘阴| 乾安| 文登| 岳普湖| 上高| 淮阴| 敦化| 芜湖县| 宜都| 龙里| 洛扎| 文昌| 鹤岗| 长葛| 保亭| 天门| 汝南| 库伦旗| 武都| 隆安| 延津| 浦城| 伽师| 刚察| 五峰| 广德| 渝北| 郫县| 柳江| 哈巴河| 上海| 黑河| 宁波| 伊金霍洛旗| 通渭| 礼县| 宜宾县| 惠来| 会宁| 井冈山| 镇远| 舞钢| 志丹| 贾汪| 庆云| 四平| 万安| 子长| 于田| 辉南| 盐山| 株洲县| 友好| 潞城| 逊克| 偃师| 山东| 鄢陵| 潮州| 万荣| 剑河| 永顺| 贵南| 高青| 华池| 青龙| 黄岩| 嘉黎| 长葛| 太原| 塔河| 岚皋| 户县| 鹤岗| 吴中| 大连| 洛川| 沂水| 涿鹿| 应城| 武汉| 苍山| 苏尼特左旗| 平阳| 汕尾| 松桃| 扶余| 喀喇沁左翼| 南澳| 金佛山| 灵台| 赵县| 合浦| 永宁| 武威| 固镇| 南票| 龙胜| 松阳| 岑溪| 中卫| 克东| 德钦| 平罗| 南京| 献县| 郧西| 台前| 琼山| 固原| 松滋| 简阳| 黔江| 兴国| 平昌| 延吉| 泸水| 元谋| 衡山| 丹江口| 饶河| 正阳| 永安| 平山| 漠河| 龙泉| 阿克陶| 镇坪| 吴川| 莘县| 兖州| 琼山| 弓长岭| 衡山| 萨迦| 玉林| 拜城| 黔江| 鹿邑| 三穗| 宝清| 昆山| 屏东| 泽普| 沙坪坝| 扬中| 夹江| 江安| 带岭| 长春| 定日| 绥芬河| 朝阳县| 荆州| 浦口| 九江市| 大方| 洛南| 瓯海| 边坝| 丹巴| 平定| 太和| 剑川| 睢宁| 东辽| 海南| 太和| 长沙县| 乌什| 沂南| 霍林郭勒| 浮梁| 淳化| 惠山| 盂县| 平罗| 荥阳| 平原| 长岭| 平果| 七台河| 福安| 新都| 杭锦旗| 特克斯| 景泰| 工布江达| 平昌| 沧县| 邕宁| 互助| 汉阳| 彰武| 深泽| 武冈| 伊吾| 郁南| 让胡路| 云林| 新化| 铁力| 奎屯| 托克托| 勉县| 唐河| 香格里拉| 微山| 芷江| 田阳| 通榆| 淮阴| 徐水| 同安| 库车| 乐东| 吉首| 建阳| 哈巴河| 泸西| 保定| 乌海| 本溪市| 丰台| 嘉鱼| 阳高| 阜新市| 云溪| 安国| 伊吾| 创业
press enter to search

Foot artists have finely tuned 'toe-maps' in their brains

 

Agence France-Presse

Washington, United States  /  Thu, September 12, 2019  /  09:06 am

Disabled 14-year-old Arijon Krasniqi, uses his foot and toes to drink from a glass at his home close to the town of Malisheva, in central Kosovo, on September 29, 2014. A new study has found that the brain maps each toe in armless artists who paint with their feet but not in handed people. (AFP/Armend Nimani)

Artists who paint with their feet because they were born without arms have individualized areas of the brain assigned to each of their toes, a trait not found in handed people, scientists have reported.

Their paper, published in the journal Cell Reports on Tuesday, raises intriguing questions about brain plasticity early in life: Are humans born with so-called toe-maps that most lose as a result of not using their feet for intricate tasks because they wear shoes?

Or, are we born without this trait but develop it if the body is used in particularly dexterous ways? 

The researchers at the Institute of Cognitive Neuroscience, University College London, worked with Tom Yendell and Peter Longstaff, two of only three major foot artists in the United Kingdom. 

"We're trying to find the relationship between behavior and how that shapes representations in our brain," co-author Daan Wesselink told AFP, specifically the somatosensory cortex.

Body parts are represented within this brain region in a way that roughly follows their position on the body, with the foot artists providing an illuminating boundary case of people who use their toes in ways that most others do not.

The team performed a series of functional magnetic resonance imaging (fMRI) scans on the two foot artists and on nine male volunteers who have arms. 

While the limbed volunteers were in the fMRI machine, the scientists touched each of their fingers and found individual spots of brain activity next to each other -- but when they touched the toes, they found no organized pattern.

The artists, however, had individualized areas for each of the toes that corresponded to their position on the body -- in other words, toe-maps, which are also present in non-human primates.

Read also: Electrical brain stimulation can boost memory function in older people

"This was a fun experiment, but it has bigger implications," said Wesselink.

Scientists know there is a critical period of brain plasticity early in life when we are uniquely capable of learning, and it could be that the artists exploited this crucial window to rewire their gray matter.

Or, "there could be some aspects related to brain changes that dramatically shift because they are born without upper limbs and hands," he added.

To try to resolve this question, the researchers plan to look at amputees and whether they too develop toe-maps. 

The team hopes to use the findings to investigate whether they can incorporate robotic prostheses onto adults' body maps. 

"Whether it's the hand or toe, or any body part, we want to understand more about how the brain copes with these different types of changes," said first author Harriet Dempsey-Jones. 

"Mapping out finger and toe activity in the brain can help advance brain-machine interface technology where the brain learns how to control each digit of a prosthetic."

That could help if in the future scientists develop an extra pair of robotic arms or additional fingers as assistive devices, an active area of research for the UCL's Plasticity Lab.

养鱼池路养鱼池 闻集乡 芳群园一区社区 沙坪坝 李晨分手后首现身 矿建街 下墓村 二林镇 南门仓
由旺镇 红庙儿街 省荣军医院嘉兴商城 白沙路南段 梨园地区 五四广场 东方天郡 茂租乡 酉阳县
高川乡 木黄镇 沂北乡 关山村 沙龙路 八街社区 九黄路口 铁村乡 池江镇 萝卜洲
https://www.whr.cc/bbsitemap.htm